

Relationship between Rainfall and Electricity Spot Prices in the Southeast of Brazil

Mônica Barros Rio de Janeiro December, 11th, 2001

Objectives

Investigate the relationship between prices and precipitation in the SE region of Brazil.

 Create a forecasting model based on precipitation data.

The data

- Monthly precipitation data on 28 measuring stations throughout the SE region of Brazil for the period between January 1995 and October 2001.
- Data Sources: Aneel (the regulatory agency for the electric sector in Brazil), Inmet (government sponsored climate institute) and Furnas (energy generator owned by the federal government).
- Stations were chosen with 2 major concerns:
 Proximity to large reservoirs
 Availability whenever possible, public data sources were chosen (Aneel and Inmet)

Location of Measuring Stations

Estação	Latitude	Longitude	Fornecedor	Número
Boa Esperança	21:08S	45:57W	Furnas	1
Carmo	20:95S	46:15 W	Furnas	2
Guapé	20:75S	45:92W	Furnas	3
Usina de Furnas	20:68S	46:28W	Furnas	4
Usina de Marimbondo	20:28S	49:18W	Furnas	5
Conceição das Alagoas	19:90S	48:39W	Furnas	6
Fazenda Bela Vista	20:90S	48:03 W	Furnas	7
Usina Porto Colômbia	20:12S	48:57W	Furnas	8
Frutal	20:02S	48:56W	Inmet	9
Lavras	21:14S	45:00W	Inmet	10
M achado	21:40S	45:55W	Inmet	1 1
Uberaba	19:45S	47:56W	Inmet	1 2
Três Lagoas	20:47S	51:38W	Inmet	13
Rocinha	18:37S	46:92W	Hidroweb	1 4
Lagamar	18:18S	46:80W	Hidroweb	1 5
Monte Carmelo	18:72S	47:52W	Hidroweb	16
Estrela do Sul	18:73S	47:69W	Hidroweb	1 7
Abadia dos Dourados	18:49S	47:40W	Hidroweb	18
Cascalho Rico	18:58S	47:87W	Hidroweb	19
Coromandel	18:47S	47:19W	Hidroweb	20
Irai de Minas	18:98S	47:46W	Hidroweb	2 1
Fazenda Cachoeira	18:70S	48:78W	Hidroweb	2 2
Tupaciguara	18:60S	48:69W	Hidroweb	23
Xapetuba	18:86S	48:58W	Hidroweb	24
Ituiutaba	18:94S	49:46W	Hidroweb	25
Ipiacu	18:69S	49:94W	Hidroweb	26
Avantiguara	18:77S	49:07W	Hidroweb	2 7

Location of Measuring Stations

Correlations – Log(Price) and rainfall

	LOG CMO SOUTHEAST
LOG CMO SOUTHEAST	1 0 0 . 0 0 %
Zc: B E sperança	-0.02%
Zc: Carm o	-1.64%
Zc: Guapé	-6.39%
Zc: Us. Furnas	-7.83%
Zc: Conc. das Alagoas	-4.41%
Zc: Fz. Bela Vista	-6.38%
Zc: Us. Marim bondo	1 . 0 0 %
Zc: Usina Porto Colombia	-6.83%
Zc: Frutal	-12.79%
Zc: Lavras	-1.78%
Zc: Machado	-4.60%
Z c : U b e ra b a	0.10%
Zc: TLagoas	-4.79%
Zc: Rocinha	-8.26%
Zc: Lagam ar	-5.52 %
Zc: Monte Carmelo	6.66%
Zc: Estrela do Sul	4 . 1 0 %
Zc: Abadia dos Dourados	-3.63%
Zc: Cascalho Rico	2 . 1 8 %
Zc: Corom andel	-7.58%
Z c : Iraí d e M in a s	4 . 6 4 %
Zc: Fazenda Cachoeira	- 4 . 1 1 %
Z c : T u p a c ig u a r a	-4.96%
Z c : X a p e tu b a	-8.76%
Z c : Itu iu ta b a	- 3 . 3 5 %
Z c : Ip ia c u	-2.99%
Z c : A v a n tig u a ra	- 3 . 4 7 %

Model Considerations

- □ Let t denote the current time period, so that t –1 and t –2 refer to the previous month and two months ago
- We'll fit a model with the following structure:
- Dependent Variable: log(Price(t))
- Explanatory Variables
 - □ Log(Price(t-1))
 - □ Standardized Precipitation at different measuring points at times t, t –1 and t -2

Model Considerations

- Why use standardized rainfall?
 - □ To keep all variables on "equal footing";
 - What should really matter is whether or not it rained a lot, but not the actual amount of rain;
 - □ Thus, we standardize all precipitation values (to have mean zero and std. deviation one) before using them in any model.

Model 1

□ Structure and Coefficients

□ Constant 0.8233

□ Log Price (t-1) 0.7852

□ Xapetuba (t-2)0.5265

□ Uberaba (t-1) -0.5613

 \Box R² = 67%

 \Box MAPE = 21.2%

Model 1 Fit (in sample)

Why include these measuring stations?

- □ Some dramatic rainfalls!
- □ On the next graph we present the standardized rainfalls for Xapetuba and Uberaba stations – note some values above 3 standard deviations during the wet season (December to March).

Standardized Rainfalls

Conclusions

- □ Can precipitation provide information about spot electricity prices in Southeast Brazil? YES!
- The proposed model has a very simple structure and can be used in forecasting BUT... Most of its the explanatory power comes from the AR component (previous month price).
- However, the proposed model can serve as a first guess when trying to forecast next month's spot price, since currently electricity prices in Brazil are generated by a complex optimization model, that requires several hours to run in a top quality PC.

Further Steps

 Cluster similar measuring stations, to try to combine their informations.

□ The question that remains is: will the clusters have better predictive ability than individual stations?